
Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

Hash Function Implementation for Rubik's Cube

Scramble in Multi-Blind Competition

Dhafin Rayhan Ahmad - 13518063

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: dhafindiamle@gmail.com

Abstract—In the last few years, people around the world have

been trying to improve their knowledge and skills to get advanced

on the twisty puzzle Rubik’s cube. There were various

customizations and modifications have been made to the original

six-sided cubic puzzle. Methods on solving the cube also grow to

push any existing limitation in the world of speedsolving. As

blindfolded solving is introduced to the cubing community, the

mechanism of Rubik’s cube is getting more covered in studies on

the cube itself, including relation possibilities between hash

function and the cube.

Keywords—Rubik’s cube; hash function; scramble; multi-blind;

competition

I. INTRODUCTION

Recently, people have been spending their time on a widely

popular twisty puzzle, the Rubik’s cube. Since its popularity in

1980s, a lot of puzzle-enthusiast had tried to beat each other in

term of solving time. Some even tried to solve the cube in

various way, such as one-handed, with feet, or the hardcore one,

blindfolded. Several methods have been invented in order to

solve the Rubik’s cube. Most of the methods combine the

advantages of intuition and memorization. On the other hand,

the blindfolded solving requires a one to have strong intuition

about how the pieces are moving in the Rubik’s cube. Therefore,

people with great intelligence – notably high IQ point – will

most likely to learn blindfolded solving faster than the others.

Although, with a lot of practice, anyone can achieve the same

ability.

With eyes closed while solving the Rubik’s cube, one cannot

track on where the pieces are going. So before starting the solve,

he should memorize where the pieces should go (with eyes open,

of course), and these information are used to determine his turns

while on the solving stage. This blindfolded phase requires him

to turn the cube very carefully, as a single mistake can already

ruin the whole solve. But with a lot of practice, and an

appropriate turning technic – also called “fingertricks” – people

can smash the blindfolded phase just as fast as a normal solve,

without worrying about messing it up. Although, no blindfolded

solver can guarantee a one hundred percent of success on that

speedy rhythm.

Blindfolded solving – or the abbreviation, blindsolving –

methods are keep being developed in years. Some blindsolvers

are inventing the easier method on solving the cube blindfolded,

which aim to approach more people into blindsolving. While the

others, are keep inventing a more advanced one, as an attempt

to push their limits down with optimal memorization and

execution methods. But what we have to know is that, all these

methods are based on a basic concept, often called “piece-

tracking”. This concept can even be made much simpler with the

present of graph representation. With a good understanding on

the relation between the two, one can already dig into the world

of blindfolded solving.

II. RUBIK’S CUBE, MULTI-BLIND, AND HASH FUNCTION

A. Rubik’s Cube

The Rubik’s cube is a six-sided three-dimensional puzzle,

each side usually colored with different colors each other. The

cube was invented in 1974 by Hungarian sculptor and professor

of architecture Ernő Rubik, and get licensed to be sold by Ideal

Toy Corporation in 1980. After this agreement, the puzzle start

to spread wide around the world, starting the crazy age of

solving the Rubik’s cube.

The sides of Rubik’s cube are recognized with the difference

of sticker color sticked on the cube surface, each one of these

six colors: white, yellow, green, blue, red, and orange. A popular

coloring scheme is to place two similar colors at the opposite

side to each other (e.g., red is opposite to orange), although other

forms of scheme are also found in the other part of the world,

such as the Japanese-scheme in Japan. Some people even use

different colors on the cube, using their own color choice in

contrast of the six popular one.

Fig. 1. The standard color scheme for the Rubik’s Cube.

The Rubik’s cube can be seen as a set of faces, which each

side has 9 stickers, resulting in a total of 54 faces. A better way

to view the cube is to partition the cube into pieces, which is

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

more practical in any solving method. This also gives anyone

who learns the cube a better understanding of how the

mechanisms work. The puzzle is broken down into three main

parts, which is the corners, the edges, and centers. On a normal

3x3x3 Rubik’s cube, there are 8 corner pieces, 12 edge pieces,

and 6 center pieces. A corner piece can be defined as the piece

that has three colors on it, edge piece is where the piece has two

colors on it, whereas the center piece has only one color attached

to it.

Fig. 2. From left to right, showing the Rubik’s cube in highlight of: the

corner pieces, the edge pieces, and the center pieces.

A corner piece can only go to the place of the other corners,

and so for edges and centers. By this means that, for example,

an edge piece cannot go to the place of a corner piece. The

position of center pieces are not changing to each other by any

turn, so they are already in their fixed position. Due to this fact,

any turns applied to the cube are just actually edges and corners

messing around the center pieces.

Some terms are defined for the Rubik’s cube to make

discussion easier. In a blindfolded solving world, it is required

to be familiar to the terms of Rubik’s cube turning, memorizing,

and tracking. Notations are used to make the terms even simpler

to understand. These terms will be discussed in a later section.

B. Multi-Blind

Multi-Blind, or multiple blindfolded solving, is a term used in

competition format where people are trying to do multiple

blindsolves at once. Blindsolving, or blindfolded solving, is

used to describe the action where someone is attempting to solve

the Rubik’s cube blindfolded, using the information he got

before by observing the cube with eyes open.

Cubers – a term for people who like to play the Rubik’s cube

and its variant – have developed several methods in solving the

Rubik’s cube blindfolded. The method of blindfolded solving is

different with sighted solving. While on a sighted solve you can

see what case you’re getting on after applying some moves, in

blindfolded solve you have to know where the pieces are going

mid-solve.

Fig. 3. A cuber attempting a blindfolded solve – unaware with the situation

of his house.

 (Source: https://ruwix.com/the-rubiks-cube)

The base concept of doing a sighted solve is to complete the

cube layer by layer, and the more advanced methods might do

the layers simultaneously. On the other hand, blindsolving has

the base concept called “tracking.” During the memorization

phase, one who do a blindfolded attempt will try to track on two

stuffs: where the corners are going, and where the edges are

going; each of them started with a piece of his choice as a

“buffer.” These tracking are translated into the memorization

method he prefers, usually by using a letter representation for

each sticker, and forms words from them. This memorization

later be translated on the solving phase, or the execution phase,

by doing algorithms that only affect few pieces once, so it is

easier to maintain the tracking of the whole cube.

An example of method used to solve the Rubik’s cube

blindfolded is the beginner method of blindsolving, OP/OP.

This execution method was founded by Stefan Pochmann,

before he invented his new method for corners which he called

R2, and a method for edges named M2. OP is the abbreviation

for Old Pochmann, called this way as it’s Stefan’s older method.

OP/OP means doing both edges and corners execution with his

old methods.

The concept of the method is quite simple, it uses buffer

pieces as a starting piece, and then we track on where the piece

should go to get the solved state. The buffer piece for corners is

𝑈𝐵𝐿 (the details of these notations can be referred in the

notation and convention section), and the buffer for edges is 𝑈𝑅.

An algorithm is used to shoot the corner buffer to a target sticker,

which is on the position of 𝑅𝐹𝐷. A different algorithm is used

to shoot the edge buffer to a target sticker on 𝑈𝐿. To shoot the

buffer to a different target mentioned before, we use set-up

moves.

To determine the set-up moves, we first eliminate the side that

should not be turned on the set-up. For corners, since the buffer

is on 𝑈𝐵𝐿, therefore the sides 𝑈, 𝐵, and 𝐿 can not be a part of

the set-up algorithm. This means that our set-up algorithm

would contains only combination of 𝐷, 𝐹, and 𝑅 turns.

A more advanced method uses direct 3-cycle to move the

pieces along the solves. The method is often referred as 3-style.

This idea of this method is to use the commutator concept to

move three pieces at a time without messing up the others. An

example commutator would be [𝑅 𝑈 𝑅′, 𝐷] which move 𝑈𝐹𝑅 to

𝑅𝐹𝐷, 𝑅𝐹𝐷 to 𝐹𝐿𝐷, 𝐹𝐿𝐷 to 𝑈𝐹𝑅. It forms a 3-cycle of 𝑈𝐹𝑅 −
𝑅𝐹𝐷 − 𝐹𝐿𝐷.

C. Hash Function

A hash function is a process that transforms any random

dataset in a fixed length character series, regardless of the size

of input data. The output is called hash value or code, digest,

image, or hash. The term “hash” can be both referenced to the

hash function or to the hash value, which is the output of

applicating this function on a particular message. The data that

are to be run through the hash function are called message. The

set formed by all possible messages is the message domain or

message space. Hash functions are widely used for various

cryptographic applications, e.g., for storing of password hashes

or key derivation.

Hash function can be used to process Rubik’s cube scramble

notation into hexadecimal digest. For example, the scramble “L

D' F U' F L U B' U2 F2 B R2 U2 R2 U2 B' U2 R2 F2 R' U Fw

Uw” will be transformed into the following digest:

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

ff26da56de7655d550622c365797c6ca468b5344c7bd96dad8

65afc4bb3da29d

In this example, the scramble is translated into a set of bits,

from which, after a series of operations, a 256-bit string is

obtained (here represented by its value in hexadecimal notation).

The optimal properties of a hash function are:

• It may be played on digital contents of any size and

format: at the end of the day, for a computer, all types of

digital content (text, images, videos, etc.) are numbers.

• Any given input may produce a fixed size numerical

output.

• This output is deterministic, that is; the same input

message or dataset always yields the same output.

• Reconstructing the original input from the hash function

output must be extremely difficult, if not outright

impossible.

• A minimum variation in the original message (one bit)

must yield a completely different hash (diffusion).

• Taking an input message, finding another message with

the same digest must be extremely difficult (weak

collision).

• Finding any two messages that yield the same summary

must be also extremely difficult (strong collision).

• The hash algorithm must cover the entire hash space

uniformly, which means that any output of a hash

function has, in principle, the same probability of

occurrence as any other. Therefore, all values in the hash

space may be an output of the hash function.

In general, hash functions work as follows: the input message

is divided into blocks. Then the hash for the first block, a value

with a fixed size, is calculated for the first block. Then, the hash

for the second block is obtained and added to the previous

output. This process is repeated until all blocks are calculated.

III. NOTATION AND CONVENTION

Several notations are used to cover the discussion of turns,

permutations, and piece names in the Rubik’s cube. Some

conventions are also to be introduced to keep the explanation

simple.

The Rubik’s cube would generally be drawn as a three-

dimensional cube showing three sides of it, while the rest are not

shown due to perspective angle. Some figures will use

translucent cube drawing to show the back sides of the cube. The

six sides of the cube are named by the direction their faces are

pointing to (up, down, left, right, front, back). The convention is

to say the side that appears on the upper part of the figure is up,

the one on the left is front, and the other one is right. Therefore,

the sides not shown on the figure are down, back, and left, each

of them is opposite to up, front, and right, respectively. In the

default solved state case shown on this paper, as appears on Fig.

8, the up would be the yellow side, front would be the red side,

and the green side for right.

Fig. 4. The three sides of the cube, each letter denoting the initial of their

side names.

From here on, we will be using a shorter way to call the six

sides, by their initials. For example, 𝑈 is for up, 𝑅 is for right,

and so on. On a turning sequence, or called an algorithm, moves

are written as the six initials, telling which face needs to be

turned 90° clockwise. An apostrophe modifier tells us to turn the

side 90° counterclockwise (instead of clockwise). Another

modifier is to put the number 2 at the end of a letter to denote

the 180° turn. Algorithms should be executed in the order as they

appear. An example algorithm is 𝑅 𝑈′𝐹2, which read as “turn

the right face 90° clockwise, and then turn the up face 90°

counterclockwise, and then turn the front side 180°.”

Fig. 5. From left to right: the puzzle on its solved state; 𝑅 applied; 𝑅 𝑈′

applied; and finally the whole algorithm 𝑅 𝑈′𝐹2 is applied.

Beside face turns, there are also turns that affect the middle

part of the cube called slice turns. The three slice turns are 𝑀, 𝑆,

and 𝐸. Slice 𝑀 is the slice between left and right sides, being

turned just as the 𝐿 move. Slice 𝑆 is the one between front and

back sides, following the turning of 𝐹 move. The last, 𝐸 slice is

between up and down sides, turns as the 𝐷 face turns. Modifiers

also applies to slice moves. Fig. 10 shows the solved state cube

after being applied by the slice moves.

Fig. 6. Appearance of the cube after being applied: the 𝑀 move, the 𝑆 move,

and the 𝐸 move; respectively, each from a solved state.

Another important thing to note is the commutators and

conjugates notation. A commutator is an algorithm in the form

of 𝐴 𝐵 𝐴′ 𝐵′, where either 𝐴 and 𝐵 can be a set of turns or just a

single turn. Whenever an algorithm meets this condition, it can

be written in a shorter notation, [𝐴, 𝐵]. For example, the

commutator [𝑈′𝑅2 𝐵, 𝐿] in its longer form is

𝑈′ 𝑅2 𝐵 𝐿 𝐵′𝑅2 𝑈 𝐿′. Notice that the inverse of an algorithm is

made by reading the algorithm backward and inversing every

individual move on it (180° turn moves maintain the same).

A conjugate is where an algorithm is in the form of 𝐴 𝐵 𝐴′.
The form can be written as [𝐴: 𝐵]. We can combine conjugates

and commutators on commutator, as in [𝐷: [𝑈′ 𝑅′ 𝑈, 𝑀′]],
which read as 𝐷 𝑈′ 𝑅′ 𝑈 𝑀′ 𝑈′ 𝑅 𝑈 𝑀 𝐷′.

To build an easier communication, the community of Rubik’s

cube define a standard guide for naming each sticker place for

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

the cube. Rather than saying “the yellow sticker on the green-

yellow-red corner,” it is more convenient to say it by the initials

of the face associated to the sticker. For example, we would refer

the red sticker on the yellow-red-green corner as 𝐹𝑅𝑈. The first

initial is indicating on which side is the sticker we’re meant to,

followed by another two sides of the corner, preferably in

counterclockwise cycle (saying 𝐹𝑈𝑅 is still acceptable though).

The same goes for the edges, for instance, the yellow sticker on

the green-yellow edge is called 𝑈𝑅. Please be aware that this

labelling system is dependent on the cube orientation we use.

Fig. 7. Example of the labelling system.

Another easy way of naming the stickers is by using letters.

For blindfolded solving, it is often encouraged to use this

lettering system to make the memorization easier. The letters

translate from the normal labelling system as shown on Table 1.

TABLE I. THE LETTERING SYSTEM FOR CORNERS

Sticker Label Sticker Letter

UBL A

URB B

UFR C

ULF D

FUL E

FRU F

FDR G

FLD H

RUF I

RBU J

RDB K

RFD L

BUR M

BLU N

BDL O

BRD P

LUB Q

LFU R

LDF S

LBD T

DFL U

DRF V

DBR W

DLB X

As seen on Table 1, capital letters are used. To make it

different, the edge stickers use noncapital letters instead.

TABLE II. THE LETTERING SYSTEM FOR EDGES

Sticker Label Sticker Letter

UB a

UR b

UF c

UL d

FU e

FR f

FD g

FL h

RU i

RB j

RD k

RF l

BU m

BL n

BD o

BR p

LU q

LF r

LD s

LB t

DF u

DR v

DB w

DL x

IV. APPLYING HASH FUNCTION ON MULTI-BLIND

SCRAMBLES

In a multi-blind competition, competitors are given several

cubes that are needed to be solved blindfolded. These cubes are

scrambled using pre-generated scramble sequences, which have

to be the same among all competitors. To ensure fairness in the

competition, organizers need to verify that all competitors have

the same scramble for all cubes they attempt. Sometimes, the

number of cubes is too many to verify that it will take a long

time to do the verification. To make verification easier, take less

time but still ensure security, competition organizers can apply

a hash function to the scrambles, and check the digest to verify

all the scrambles.

The scrambles for all cubes are treated as a single string,

delimited by newlines. These scramble sequences are then to be

processed by the hash function, to generate a digest that is used

to verify all scrambles for all competitors. The function we’re

using here is a commonly used hash function, SHA-256. This is

a moderately sufficient hash algorithm to verify Rubik’s cube

scramble sequences.

In the program that we made, we take input from texts that

contain scramble sequences for each competitor that participate

in the multi-blind contest. The scrambles are then processed by

the SHA-256 function implementation in Python. A function

will determine if both scramble sequences are exactly the same

for all cubes. For example, if a competitor has scramble

sequences like this:

D L' B R F' D F' B2 U' L' F2 B2 D2 R' F2 D2 F2 L' U2 R Rw'

Uw'

F2 D' B2 L' U2 B2 F2 L' R2 U2 R2 D2 U2 F2 B' L B L2 F'

L2 R Rw Uw2

U' F2 D2 B U2 B R2 D2 L2 F2 R2 U2 F2 D' L' U' B R F' D F

Rw2 Uw

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

U' L D2 F2 U R2 D F2 R2 D R2 U R D2 B' L D F' R Rw Uw

D' L2 R2 F2 U' F2 D L2 U' B2 D2 R2 L F R U2 R' D F' D2

R'

L D' F U' F L U B' U2 F2 B R2 U2 R2 U2 B' U2 R2 F2 R' U

Fw Uw

L2 B' L2 F2 L2 D L2 R2 D L2 U B2 U2 L R2 F L2 F2 L' B'

Fw' Uw'

R' B2 D L2 D' R2 F2 D' R2 U F2 L2 D2 R' F' L2 D' F2 R U'

R'

D2 L2 D2 U2 F L2 D2 B2 F R2 F2 U' L U R' B D U2 F R2

U2 Rw' Uw2

R U' L2 D' R2 U R2 B2 U' F2 D2 L2 F L2 U' F D2 L B2 D' F

Fw' Uw

F R2 U2 B' D2 B U2 R2 B2 F' R2 B' L D U2 L2 D2 B U' F2

L Fw Uw'

F L2 F2 L2 D' R2 U R2 U2 F2 D2 U L B' R' F2 D L U' B2 R'

Rw Uw'

D L' F2 D2 B R F' U2 R' B2 U D L2 D R2 B2 U' F2 L2 Rw

Uw'

D' F' B D2 B2 L2 D R U2 F2 U2 B D2 R2 L2 B U2 F' D2 L'

Rw Uw2

R2 L' U L B' R' F2 L D' R2 F2 D2 R' U2 R D2 L2 B2 L D2

Fw Uw

R2 D2 B2 F D2 R2 B2 U2 R2 U2 L2 U' F R' B' R F2 R2 F'

L2 Fw

B R' B L2 F L2 F' L2 F2 L2 F' D2 B' R U' B' F D' R B2 Fw

Uw2

F2 U' F2 U R2 B2 D L2 U L2 F2 B U B2 U2 L2 U' L' R' B U

Fw Uw'

U F' U2 D L2 B L' F R2 L2 U2 B2 U' B2 L2 D2 F2 L2 D' B'

Uw2

D2 F2 R' F2 U2 L2 R' F2 R2 U2 D R B2 U2 L B L' U' B2 Rw

Uw2

If another competitor has exactly the same scramble

sequences, the program will produce output as follows:

Digest 1:

c516f0346ac4d977fee80e1af78436ab958ed8331d8835ead54b4

2539a9f066a

Digest 2:

c516f0346ac4d977fee80e1af78436ab958ed8331d8835ead54b4

2539a9f066a

Both scramble sets are the same

Another example, if a different competitor has a slightly

different scramble, that is an 𝐹 move is mistaken to be an 𝐹′
move in the tenth scramble, so the whole scramble sequences

look like this:

D L' B R F' D F' B2 U' L' F2 B2 D2 R' F2 D2 F2 L' U2 R Rw'

Uw'

F2 D' B2 L' U2 B2 F2 L' R2 U2 R2 D2 U2 F2 B' L B L2 F'

L2 R Rw Uw2

U' F2 D2 B U2 B R2 D2 L2 F2 R2 U2 F2 D' L' U' B R F' D F

Rw2 Uw

U' L D2 F2 U R2 D F2 R2 D R2 U R D2 B' L D F' R Rw Uw

D' L2 R2 F2 U' F2 D L2 U' B2 D2 R2 L F R U2 R' D F' D2

R'

L D' F U' F L U B' U2 F2 B R2 U2 R2 U2 B' U2 R2 F2 R' U

Fw Uw

L2 B' L2 F2 L2 D L2 R2 D L2 U B2 U2 L R2 F L2 F2 L' B'

Fw' Uw'

R' B2 D L2 D' R2 F2 D' R2 U F2 L2 D2 R' F' L2 D' F2 R U'

R'

D2 L2 D2 U2 F L2 D2 B2 F R2 F2 U' L U R' B D U2 F R2

U2 Rw' Uw2

R U' L2 D' R2 U R2 B2 U' F2 D2 L2 F L2 U' F' D2 L B2 D'

F Fw' Uw

F R2 U2 B' D2 B U2 R2 B2 F' R2 B' L D U2 L2 D2 B U' F2

L Fw Uw'

F L2 F2 L2 D' R2 U R2 U2 F2 D2 U L B' R' F2 D L U' B2 R'

Rw Uw'

D L' F2 D2 B R F' U2 R' B2 U D L2 D R2 B2 U' F2 L2 Rw

Uw'

D' F' B D2 B2 L2 D R U2 F2 U2 B D2 R2 L2 B U2 F' D2 L'

Rw Uw2

R2 L' U L B' R' F2 L D' R2 F2 D2 R' U2 R D2 L2 B2 L D2

Fw Uw

R2 D2 B2 F D2 R2 B2 U2 R2 U2 L2 U' F R' B' R F2 R2 F'

L2 Fw

B R' B L2 F L2 F' L2 F2 L2 F' D2 B' R U' B' F D' R B2 Fw

Uw2

F2 U' F2 U R2 B2 D L2 U L2 F2 B U B2 U2 L2 U' L' R' B U

Fw Uw'

U F' U2 D L2 B L' F R2 L2 U2 B2 U' B2 L2 D2 F2 L2 D' B'

Uw2

D2 F2 R' F2 U2 L2 R' F2 R2 U2 D R B2 U2 L B L' U' B2 Rw

Uw2

It will produce an output as follows:

Digest 1:

c516f0346ac4d977fee80e1af78436ab958ed8331d8835ead54b4

2539a9f066a

Digest 2:

feba70e47ef28f95b0c3b74e44f48db5a2124441ddc458773c7fc

5488cd4811c

Scramble sets are different

As we notice, a single move difference in the tenth scramble

makes a significant change in the output digest. Therefore, the

use of hash function in the case of verifying multi-blind

scrambles for fairness among the competitors is proven to be

effective, and yet easier for organizers to use this instead of

verifying all the scrambles manually.

V. APPENDIX

All Rubik’s cube models shown in this paper are generated

from an open-source visual cube generator from

http://cube.crider.co.uk/visualcube.php.

VI. ACKNOWLEDGMENT

All praise to Allah, only with His guidance I could finish this

paper. After that, I thank Dr. Ir. Rinaldi Munir, M.T. for his

guide in understanding the cryptography in the class. Special

thanks to Ernő Rubik for his amazing invention on the cube. I

also appreciate to the great community of cubing, especially

Stefan Pochmann, for developing such a great concept in the

world of blindfolded Rubik’s cube solving.

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

REFERENCES

[1] C. Paar & J. Pelzl, Understanding Cryptography. Berlin: Springer-Verlag

Berlin Heidelberg, 2010.
[2] D. Rayhan, Graph Application in Rubik’s Cube for Blindfolded Solving.

2019.
[3] D. Rayhan, Regular Expression Application in Rubik’s Cube Algorithm for

Eliminating Redundant Moves. 2020.

[4] Agencia española de protección de datos, Introduction to the hash function
as a personal data pseudonymisation technique. 2019.

[5] https://www.rubiks.com/en-us/about (accessed on December 19th, 2021)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2021

Dhafin Rayhan Ahmad (13518063)

